| Reg.No: |  |  |  |  |
|---------|--|--|--|--|
|---------|--|--|--|--|



#### VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam - 637205, Tiruchengode, Namakkal Dt., Tamil Nadu.

# **Question Paper Code: 9010**

### B.E. / B.Tech. DEGREE END -SEMESTER EXAMINATIONS - MAY / JUNE 2024

Fifth Semester

## Biotechnology

# U19BT516 – HEAT AND MASS TRANSFER

(Regulation 2019)

Time: 3.00 Hours

Maximum: 100 Marks

# Answer ALL the questions

| :0 | Knowledge Levels | K1 - Remembering  | K3 -Applying  | K5 - Evaluating |
|----|------------------|-------------------|---------------|-----------------|
|    | (KL)             | K2 -Understanding | K4- Analyzing | K6 - Creating   |

#### PART - A

|       |                                                                                                                                                                                          | $(10 \times 2)$ | =20 N | (Iarks |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|--------|
| Q.No. | Questions                                                                                                                                                                                | Marks           | KL    | CO     |
| 1.    | State Fourier's law of heat conduction.                                                                                                                                                  | 2               | K1    | CO1    |
| 2.    | Calculate the loss of heat per unit area from steam pipe to the surrounding air by radiation mode. Take emissivity of 0.90.  Temperature of Steam pipe = 398K  Temperature of Air = 303K | 2               | K2    | CO1    |
| 3.    | What is effectiveness of a heat exchange?                                                                                                                                                | 2               | K2    | CO2    |
| 4.    | Write the application of Baffles in Heat exchanger.                                                                                                                                      | 2               | K2    | CO2    |
| 5.    | Explain the effect of pressure in diffusivity of gases?                                                                                                                                  | 2               | K3    | CO3    |
| 6.    | How does mass transfer coefficient vary with $D_{AB}$ in film theory and penetration theory?                                                                                             | 2               | K3    | CO3    |
| 7     | Write a note on flooding in packed towers.                                                                                                                                               | 2               | K2    | CO4    |
| 8.    | What do you mean by HETP? State the factors on HETP depends.                                                                                                                             | 2               | K1    | CO4    |
| 9.    | State Rayleigh's equation.                                                                                                                                                               | 2               | K2    | CO5    |
| 10.   | How is the slope of the feed line estimated in distillation?                                                                                                                             | 2               | K2    | CO5    |

# PART – B

|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(5 \times 13 =$ |    | ,   |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-----|
| Q.N | 0. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks            | KL | CO  |
| 11. | a) | <ul> <li>i. What do you many by thermal conductivity? Write a brief note on its variation with temperature.</li> <li>ii. Derive the expression for heat transfer through cylinder. Assume k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub> be the thermal Conductivities of materials and</li> </ul>                                                                                                                                                              | 7 · 6            | K2 | CO1 |
|     |    | $x_1$ , $x_2$ and $x_3$ be the respective thickness. Assume hot face and cold face temperature be $T_1$ and $T_2$ respectively.                                                                                                                                                                                                                                                                                                                              |                  |    |     |
|     | b) | (OR) Calculate the critical radius of insulation for asbestos [k=0.17W/m <sup>2</sup> K] surrounding a pipe and exposed to room air at 298K with h=3.0 W/m <sup>2</sup> K. Calculate the heat loss from a 473 K (200 degree centigrade) 50 mm diameter pipe when covered with the critical radius of insulation and without insulation. Would any fiber glass insulation having thermal conductivity of 0.04 W/Mk cause decrease in heat                     | 13               | K3 | CO1 |
|     |    | transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |    |     |
| 12. | a) | <ul><li>i. Explain briefly about Boiling and Condensation processes.</li><li>ii. A shell and tube heat exchanger is to be provided with tubes of</li></ul>                                                                                                                                                                                                                                                                                                   | 5                | K2 | CO2 |
|     |    | 31 mm O.D 27 mm, I.D 4 m long. It is required for heating water from 295 K to 318 K with the help of condensing steam at 393 K on the outside of the tubes. Determine the number of tubes required if water flow rate is 10 kg/s. Heat transfer coefficient on the steam side and water side are 6000 W/(m <sup>2</sup> .K) and 850 W/m <sup>2</sup> K respectively.                                                                                         | 8                |    |     |
|     | b) | A solution containing 10% solids is to be concentrated to a level of 50% solids. Steam is available at a pressure of 0.20 MPa saturation temperature of 393K. Feed rate to the evaporator is 30000 kg/hr. The evaporator is working at reduced pressure such that boiling point is 323K. The overall heat transfer coefficient is 2.9kW/m²K. Estimate steam Economy and heat transfer surface for:  i. Feed introduced at 293 K ii. Feed introduced at 308 K | 13               | K2 | CO2 |
|     |    | Data: Specific heat of feed = 3.98 kJ/(kg. K)  Latent heat of condensation of steam at 0.20 Mpa = 2202kJ/kg  Latent heat of vaporization of water at 323 K = 2383kJ/kg.                                                                                                                                                                                                                                                                                      |                  |    |     |
| 13. | a) | i. Show that for equimolar counter diffusion, $D_{AB} = D_{BA}$ .<br>ii. Give the mathematical expression for analogy between heat,                                                                                                                                                                                                                                                                                                                          | 5                | K3 | CO3 |
|     |    | mass and momentum transport for laminar and turbulent flow. Write the meaning of each term.  (OR)                                                                                                                                                                                                                                                                                                                                                            | 8                |    |     |

| 3   | b) | i.        | Explain the theories used to determine the mass transfer coefficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5      | K3 | CO3 |
|-----|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----|
|     |    | ii.       | Ammonia is diffusing through a stagnant mixture consisting of one third Nitrogen and two-thirds Hydrogen by volume. The total pressure is 1 atm and the temperature is $200^{\circ}$ C. Calculate the rate of diffusion of ammonia through a film of gas 0.5 mm thick, when ammonia concentration changes across the film is 12% and 7% by volume. The diffusivities at $200^{\circ}$ C and 1 atm pressure are $D_{AB} = 5.391 \times 10^{-5} \text{ m}^2/\text{s}$ and $D_{BC} = 1.737 \times 10^{-4} \text{ m}^2/\text{s}$ .                                                                                                                                                                                                                   | 8      |    |     |
| 14. | a) | i.        | Benzene is to be recovered from a cool gas by scrubbing it with wash oil as an absorbent. $855 \text{ m}^3$ of coal gas containing 2% by volume of benzene are to be handled per hour and a 95% removal is required. The operating temperature and pressure are 299.7 K and $106.658 \text{ kPa}$ . The wash oil has an average molecular weight of 260 and contains $0.005 \text{ mole}$ fraction benzene as it enters the absorber. Calculate the minimum oil circulation rate. Equilibrium Data is given by $= Y/1+Y=0.125 \text{ X}/1+X$                                                                                                                                                                                                     | 8      | K3 | CO4 |
|     |    | ii.       | Explain in detail about choice of solvent used for absorption and absorption with chemical reaction.  (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5      |    |     |
|     | b) | i.        | Explain briefly hydrodynamics/ pressure drop characteristics of packed columns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5      | K3 | CO4 |
|     |    | ii.       | A mixture of acetone vapour and air containing 5% by volume of acetone is to be freed of its acetone content by scrubbing it with water in a packed bed absorber. The flow rate of the gas mixture 700 m³/hr. of acetone free air measured at N.T.P and that of water is 1500kg/hr. The absorber operates at an average temperature of 293K and pressure of 101 kPa. The scrubber absorbs 98% of the acetone. The equilibrium relationship for the acetone vapour -water system is given by -Y =1.68X where Y*= kg mole acetone/kg mole dry air X = kg mole acetone/kg mole water.  Calculate the mean driving force and estimate the number of transfer units (NTU) and height of column required if height of transfer unit (HTU) is 2 meters. | 8      |    |     |
| 15. | a) | i.<br>ii. | Explain the process of Azeotropic distillation<br>Draw the X-Y Plot and show on it the operating lines in case of<br>flash distillation for $f = 0$ $f = 1$ and $0 < f < 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>8 | K4 | CO5 |

(OR)

| b) | A mixture of benzene and toluene containing 60 moles % benzene is          |
|----|----------------------------------------------------------------------------|
|    | to be separated to give product of 95 mole % benzene and bottom            |
|    | product containing 10 moles % benzene. The feed enters a column at         |
|    | its bubble point. It is proposed to operate the column with reflux ration  |
|    | of 2.5. It is required to find the number of theoretical plates needed and |
|    | position of feed plate. The vapor liquid equilibrium data are given        |
|    | below.                                                                     |

| X | 0 | 0.0<br>5 | 0.1 | 0.2       | 0.3 | 0.4 | 0.5 | 0.6  | 0.7 | 0.8 | 0.9  | 1.0 |
|---|---|----------|-----|-----------|-----|-----|-----|------|-----|-----|------|-----|
| У | 0 | 0.1      | 0.2 | 0.3<br>75 | 0.5 | 0.6 | 0.7 | 0.77 | 0.8 | 0.9 | 0.95 | 1.0 |

#### PART - C

K4 CO5

13

 $(1 \times 15 = 15 \text{ Marks})$ Q. No Questions Mark KL CO 16. a) i. Calculate the heat transfer area of 1-2 heat exchangers from the 7 K3 CO<sub>2</sub> following data: Inlet and outlet temperatures of hot fluid are 423K and 353 K respectively. Over all heat transfer coefficient  $= 4100 \text{ W/(m}^2\text{K})$ Heat Loss: 407kW L.M.T.D correction factor = 0.84An oil is cooled from 353K to 313 K in oil cooler. The inlet ii. temperature of water is 303 K. Calculate the temperature of 8 cooling water leaving the cooler and logarithmic mean temperature difference assuming flow to be counter current, if the mass flow rate of oil and water are 1.4kg/s and 2.9kg/s respectively. Cp for oil = 2.135kJ/kg.K Cp for water = 4.187 kJ/kg.K(OR) b) i. The vapor pressures of A and B are 200 mm Hg and 400 mm 5 K4 CO<sub>5</sub> Hg. The total pressure is 760 mm Hg. Estimate the relative volatility? ii. A feed mixture of A and B (45 moles %A and 55 mol % B) is to be separated into a top product containing 96 mol %A and bottom product having 95 mol % B. The feed is 50% vapour 10 and reflux ratio is 1.5 times the minimum. Determine the

number of ideal trays required and the location of feed tray.

Given  $\alpha_{AB} = 2.8$ .